The Russell's Paradox

Jihao Zheng Advisor: Dr. Kathleen Fick

What is Russell's Paradox?

- Consider the property of sets of not being members of themselves.
- If the property determines a set, call it A, then A is a member of itself if and only if A is not a member of itself.
- Let x ∈ x, and let R = {x: ~Ø(x)}, then R is the set with members that are not members of themselves.

Selfshaved Barbershaved

Figure 1: barbershop paradox

Any easier way to understand

History

the paradox?

- The early-on **barbershop paradox** by Lewis Carroll.
- Barber Paradox:
 - Assume there is a barber who claims to shave some kind of people--only those that do not shave themselves.
 - The contradiction arose while asking if the barber shaves himself.
 - If yes, there's a contradiction that he did shave people who shave themselves.
 - If no, then there is also a contradiction that he didn't shave those who do not shave themselves.

Solution Approach

• Russell initialed his own response to

- In 1897, Cesare Burali-Forti had similar paradox which demonstrates the antinomy in the set with elements of all ordinal numbers.
- The Burali-Forti paradox contradicted a proof by mathematician Cantor.
- Between 1897 and 1902, Zermelo had a forerunner paradox, as one of a cluster argument, and anticipated Russell's Paradox for many years.
- Zermelo's paradox created the problem of inconsistency to Gottlob Frege's theory.
- In 1902, Russell included the discovery of his paradox in a letter to Frege, and this letter was in press as the second volume of Frege's book.
- With the communication with Frege, Russell began to write the Appendix B for his soon-to-be-released book, *Principles of*
- his paradox called *theory of types*.
- Russell's response motivated the development of *vicious circle principle*.
- From 1908, Zermelo axiomatization work has pushed the development of basic set-theoretic principles, known as *Zermelo-Fraenkel Set Theory*.
- Later on, John Von Neumann introduced the axiom of regularity (axiom of foundation). The Zermelo-Fraenkel axioms plus the Axiom of Choice (ZFC) led the development of mathematics to the standard axiom system of set theory.

Mathematics, and this appendix soon became the famous "Russell's paradox."

References

- Link, G. (2004). *One Hundred Years of Russell's Paradox Mathematics Logic, Philosophy*. Walter de Gruyter.
- Middleton, K. P. (1986). THE ROLE OF RUSSELL'S PARADOX IN THE DEVELOPMENT OF TWENTIETH CENTURY MATHEMATICS. *Pi Mu Epsilon Journal*, 8(4), 234–241. <u>http://www.jstor.org/stable/24339851</u>
- Stanford Encyclopedia of Philosophy. (2014, October 8). Set Theory. Retrieved February 24, 2022, from <u>https://plato.stanford.edu/entries/set-theory/</u>
- Stanford Encyclopedia of Philosophy. (2014, October 8). Russell's Paradox. Retrieved February 24, 2022, from <u>https://plato.stanford.edu/entries/russell-paradox/</u>
- Clarke-Doane, J. The ZFC Axiom [Class Handout]. Department of Philosophy, Columbia University, New York, New York.
- Carroll, L. (1894). "A logical paradox." *Mind*, *III*(11), 436–440. https://doi.org/10.1093/mind/iii.11.436
- Frege, G. (1967). Letter to Russell [Letter written 1902 to Russell], *From Frege to Gödel* (pp.126-128), Cambridge, Mass.: Harvard University Press.
- **Figure 1**: Simanaitis, D. (2015, July 12). *A CLOSE SHAVE WITH SET THEORY*. Retrieved March 24, 2022, from <u>https://simanaitissays.com/2015/07/12/a-close-shave-with-set-theory/</u>

