A Dynamic Indoor Field Model for Emergency Evacuation Simulation

Endashaw Tonja

Methodist University: Industrial and Systems Engineering Department

April 22, 2020

Endashaw Tonja (Methodist University: IndusA Dynamic Indoor Field Model for Emergency

Content

1 Background

- Main focus of the research
- Findings

2 Mathematical Approach

Background

The research has been conducted by Xiong, Zhu, DU, Zhu, Zhang, Niu, Li,

and Zhou, and they collected the data from the Yujiabao train station in China.

According to a statistical analysis of fire accidents in high-rise buildings in China in 2013:

- **③** 388,000 buildings fires caused 1637 causalities and
- a total loss of 0.71 billion dollars in property damage

Main focuses of the research

The research mainly focused on the following three areas:

The complexity of the indoor scene

Main focuses of the research

The research mainly focused on the following three areas:

- The complexity of the indoor scene
- Interview of the provide the second secon

Main focuses of the research

The research mainly focused on the following three areas:

- The complexity of the indoor scene
- Interview of the provide the second secon
- Itighly effective evacuation analysis

Basic indoor spatial model

To provide efficient indoor evacuation, a basic indoor spatial model should have the following three characteristics:

Interior structure and dynamic emergency

Basic indoor spatial model

To provide efficient indoor evacuation, a basic indoor spatial model should have the following three characteristics:

- Interior structure and dynamic emergency
- Ø Dynamic changes among indoor objects, and

Basic indoor spatial model

To provide efficient indoor evacuation, a basic indoor spatial model should have the following three characteristics:

- Interior structure and dynamic emergency
- Ø Dynamic changes among indoor objects, and
- Ongestion and stagnation prediction

Elements Required for Indoor Emergency Evacuation

Endashaw Tonja (Methodist University: InduA Dynamic Indoor Field Model for Emergency

▶ < 불 ▶ 불 ∽ ९ ୯ April 22, 2020 6 / 19

Based on the dynamic indoor field model (DIFM), the researchers found that a 3D network can reduce the evacuation time up to **33 percent**.

Mathematical Approach

$$\mu_i = \begin{cases} 1.4 & \rho \le 0.75 \\ 0.0412\rho^2 - 0.50\rho + 1.867 & 0.75 < \rho \le 4.2 \\ 0.1 & \rho > 4.2 \end{cases}$$

$$\rho = \frac{n}{Area}$$

Where μ_i is the speed of an evacuee in m/s, and

 ρ is the referencing crowd density in $\mathrm{persons}/\mathrm{m}^2, \mathit{and}$

n represents number of people

$$\omega_{utility} = \begin{cases} 0.0 & \text{grid is not covered by utilities} \\ 1.0 & \text{utility is a water resource} \\ \frac{s}{dis(u)} & \text{grid is cover by fire utility} \end{cases}$$

Where $\omega_{utility}$ is the utility weight of grids, dis(u) represents the distance to the fire utilities, and s is the grid's geometric size

$$\omega_{utility} = \begin{cases} 0.0 & \text{grid is not covered by utilities} \\ 1.0 & \text{utility is a water resource} \\ \frac{s}{dis(u)} & \text{grid is cover by fire utility} \end{cases}$$

Where $\omega_{utility}$ is the utility weight of grids, dis(u) represents the distance to the fire utilities, and s is the grid's geometric size

$$\omega_{detector} = \begin{cases} 0.0 & \text{grid is not covered by detectors} \\ -\frac{s}{dis(d)} & \text{grid is cover by detectors} \end{cases}$$

Where $\omega_{detector}$ is the detectors weight of grids, and dis(d) represents the distance to the detectors,

$$\omega_{individual} = \left\{ egin{array}{c} 0.0 \\ -rac{1}{\mu} & {
m other \ evacuee's \ location} \end{array}
ight.$$

Endashaw Tonja (Methodist University: IndusA Dynamic Indoor Field Model for Emergency

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

$$\omega_{\textit{individual}} = \left\{ \begin{array}{ll} 0.0 \\ \\ -\frac{1}{\mu} \end{array} \text{ other evacuee's location} \right.$$

$$\omega_{\text{fire}} = \begin{cases} 0.0 & \text{grid is not in fire field} \\ -\frac{s}{\text{dis}(f)} & \text{grid is in fire field} \end{cases}$$

Where dis(f) is the distance to the fire

Image: A matrix

$$\omega_{\textit{individual}} = \left\{ \begin{array}{ll} 0.0 \\ \\ -\frac{1}{\mu} \end{array} \text{ other evacuee's location} \right.$$

$$\omega_{\text{fire}} = \begin{cases} 0.0 & \text{grid is not in fire field} \\ -\frac{s}{\text{dis}(f)} & \text{grid is in fire field} \end{cases}$$

Where dis(f) is the distance to the fire

Final weight of a grid

$$\omega_{grid} = \omega_{utility} + \omega_{detector} + \omega_{individual} + \omega_{fire}$$

э

< 冊 > < Ξ

The two ways that grid weight can be 0.0

- 1. The grid is not occupied by utilities.
- 2. The grid is covered by fire utilities and water resources

Building potential evacuation route

Optimized route from individual's location to a building exit can be

calculated by A* search algorithm

A* is a search algorithm that is widely used in path finding and graph traversal, the process of plotting an efficiently traversable path between points, called nodes.

Building potential evacuation route

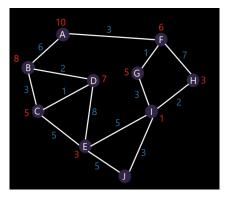
Optimized route from individual's location to a building exit can be

calculated by A* search algorithm

A* is a search algorithm that is widely used in path finding and graph traversal, the process of plotting an efficiently traversable path between points, called nodes.

 $Route(i,j) = f(Grid, L_{(i,j)}, E_{(i,j)})$

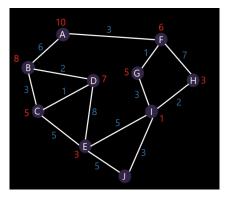
Building potential evacuation route


Optimized route from individual's location to a building exit can be calculated by A* search algorithm

A* is a search algorithm that is widely used in path finding and graph traversal, the process of plotting an efficiently traversable path between points, called nodes.

 $Route(i, j) = f(Grid, L_{(i,j)}, E_{(i,j)})$

$${\sf Route}_{{\sf individual}} = \sum {\sf Route}({\sf i},{\sf j})$$


Endashaw Tonja (Methodist University: InduA Dynamic Indoor Field Model for Emergency

Find the shortest path between A and J.

Fig 2.A* search algorithm

Endashaw Tonja (Methodist University: IndusA Dynamic Indoor Field Model for Emergency

Find the shortest path between A and J. $f(A)=3{+}6{=}9 \text{ or } 3{+}8{=}11$

Fig 2.A* search algorithm

Endashaw Tonja (Methodist University: InduA Dynamic Indoor Field Model for Emergency

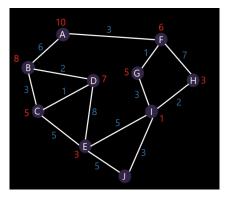


Fig 2.A* search algorithm

Find the shortest path between A and J. f(A)=3+6=9 or 3+8=11f(F)=3+1+5=9 or 3+7+3=13

Endashaw Tonja (Methodist University: IndusA Dynamic Indoor Field Model for Emergency

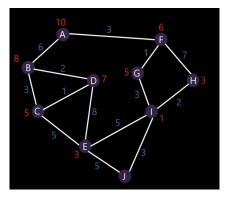


Fig 2.A* search algorithm

Find the shortest path between A and J. f(A)=3+6=9 or 3+8=11f(F)=3+1+5=9 or 3+7+3=13f(G)=3+1+3+1=8

Endashaw Tonja (Methodist University: IndusA Dynamic Indoor Field Model for Emergency

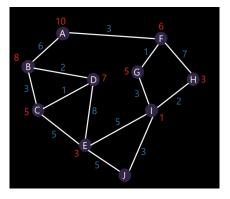


Fig 2.A* search algorithm

Find the shortest path between A
and J.
f(A)= 3+6=9 or 3+8=11
f(F) = 3+1+5=9 or 3+7+3=13
f(G) = 3 + 1 + 3 + 1 = 8
f(I) = 3 + 1 + 3 + 2 + 3 = 12 or
3+1+3+5+3=15 or 3+1+3+3=10

Endashaw Tonja (Methodist University: InduA Dynamic Indoor Field Model for Emergency

Identifying potential congestion and stagnation

 $\rho = \tfrac{n}{\textit{Area}}$

$$Situation = \left\{ egin{array}{cc} Congestion &
ho \in [1.5,2] \ Stagnation &
ho > 2.0 \end{array}
ight.$$

Endashaw Tonja (Methodist University: IndusA Dynamic Indoor Field Model for Emergency

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Identifying potential congestion and stagnation

 $\rho = \tfrac{n}{\textit{Area}}$

$$Situation = \left\{ egin{array}{cc} {\it Congestion} &
ho \in [1.5,2] \ {\it Stagnation} &
ho > 2.0 \end{array}
ight.$$

Re-calculate evacuation route

When congestion and stagnation occur around exits, the evacuation route

must be re-calculated.

The new method Vs the previous method

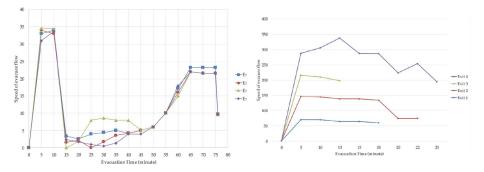


Fig 3. Speed of evacuee passing through each exist in the station with a previous model

Fig 4. Speed of evacuee passing through each exist in the station with the new 3D model

Future Studies

The proposed model can be easily applied to outdoor environments.

② Apply a detailed fire dynamic model (FDS).

In Further study on crowd flow

Future Studies

- The proposed model can be easily applied to outdoor environments.
- Apply a detailed fire dynamic model (FDS).
- In Further study on crowd flow

Future Studies

- The proposed model can be easily applied to outdoor environments.
- Apply a detailed fire dynamic model (FDS).
- Surther study on crowd flow

Reference

- Xiong, Qing and Zhu, Qing and Du, Zhiqiang and Zhu, Xinyan and Zhang, Yeting and Niu, Lei and Li, Yun and Zhou, Yan (2017), A dynamic indoor field model for emergency evacuation simulation, ISPRS International Journal of Geo-Information,
- Nosrati, Masoud and Karimi, Ronak and Hasanvand, Hojat Allah (2012), Investigation of the*(star) search algorithms: Characteristics, methods and approaches, World Applied Programming, pp. 251–256.

Endashaw Tonja (Methodist University: IndusA Dynamic Indoor Field Model for Emergency

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣

 $+ h \{a_n\}^k \varphi \circ \cup$

Endashaw Tonja (Methodist University: IndusA Dynamic Indoor Field Model for Emergency