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Introduction 
 
Figurate numbers comprise one of the oldest areas of mathematics, dating back to 
the Pythagoreans of the 6𝑡𝑡ℎ century BCE and capturing the attention of many 
mathematical luminaries, such as Fermat, Euler, and Gauss. In contemporary times, 
however, figurate numbers are studied only by student mathematicians, largely 
because of their aesthetic link to geometric objects. Interest in figurate numbers and 
in number theory generally has been in decline since the Age of Enlightenment, due 
to mathematicians’ lean towards application and the scientific customer. Modern 
mathematics is largely defined by logic and scientific application rather than 
philosophical excursion or theoretical notion. Nonetheless, despite the 
professionalization of the subject of mathematics, figurate numbers remain a rich 
subject for teaching about philosophical relationships between arithmetic and 
geometry, and, while the body of knowledge still does not have any apparent 
application, perhaps future mathematics may find a diamond that has been lying in 
the rough for several millenia. 
 

Origins 
 
 The earliest recorded forms of mathematics contain rudimentary concepts of 
numbers and counting with hardly any notion of abstract throught. The small 
archaeological record that does exist establishes the ancients’ preoccupation with 
problems largely related to infrastructure and agriculture. Exercises in trade and 
commerce that appear on several archaic clay tablets and papyrus suggest that 
numbers were largely understood by the ancients as a property of the actual physical 
object(s). For example, the sensation of water may be described as hot, tepid, or cold, 
in relation to the internal temperature of the water. Regardless of whether one tests 
the temperature of water, the water will always have a property that describes its 
current internal temperature. Similarly for the ancient view of numbers, the abstract 

quantity of three is something that cannot be transferred among objects, such as 
from goats to coins: these numbers are different types of threes that belong to 
specific groups of objects. Ancient thinkers eventually discovered how to apply the 
abstract in mathematics, but the process was slow and chaotic. The first and perhaps 
largest step toward a modern understanding of numbers comes from the ancient cult 
of the Pythagoreans. Not much is known about the leader, Pythagoras, and what is 
known comes from historians who lived hundreds of years after Pythagoras’s death. 
Despite the lack of contemporaneous reports, the records from Iamblicus, Aristotle, 
and others relay the life and philosophy of Pythagoras in the form of ancient 
biography.1 

 The mathematician Morris Kline 
highlights the interesting fact that the 
Pythagoreans did not completely 
develop an abstract notion of 
numbers, which is to say that, when 
the Pythagoreans claimed everything 
was made of numbers, they meant it 
in a literal sense. Similar to our 
current understanding that atoms are 
the building blocks of the universe, 
the Pythagoreans’ belief was that 
numbers were our atoms.3 The 
Pythagoreans did not believe that 
atoms were in the shape of numbers, 
but rather that each and every 
possible arrangement was a specific 
number. The Pythagoreans organized 
the various numbers first by 
geometric arrangement and then by 
size; today, mathematicians call these 
arithmetic progressions “figurate 
numbers.” Using geometry as the 
basis for all physical things, the 
smallest geometric figure in the traditional sense is the triangle; hence, the base 
progression of figurate numbers is known as triangular numbers. Notations for figurate 
numbers vary, so this author has chosen a notation that lends itself well to the different 
aspects of the discussion. Let  𝐹𝐹𝑚𝑚

𝑑𝑑(𝑛𝑛) = 𝑥𝑥  denote a figurate number in dimension  𝑑𝑑  
with geometric arrangement  𝑚𝑚 , side length count  𝑛𝑛  and total unit count  𝑥𝑥 , where  
𝑑𝑑, 𝑚𝑚, 𝑛𝑛, 𝑥𝑥 ∈ ℕ  and   𝑚𝑚 ≥ 3. Because the Pythagoreans held that the monad (the 
number one) was the most fundamental element from which all else stemmed, each 
geometric arrangement was composed of this self-replicated unit, as illustrated in Figure 
2:  

  

Figure 1: A depiction of Pythagoras of 
Samos2 
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𝐹𝐹3

2(1) = 1  𝐹𝐹3
2(2)

= 3 
 𝐹𝐹3

2(3) = 6  𝐹𝐹3
2(4) = 10 

 
Figure 2: The four smallest triangular numbers 

 
If one considers the total count of units for each figure in Figure 2, this arithmetic 
series takes shape:  𝐹𝐹3

2(𝑛𝑛) = {1, 3, 6, 10, 15, 21, . . . , 𝑛𝑛(𝑛𝑛+1)
2 : 𝑛𝑛 ∈ ℕ} . Taking note of 

the difference between each triangle and the next, one can deduce that the next 
largest triangle will be formed by adding a row of  𝑛𝑛 + 1  units to one of the three 
sides of the preceding figure. This deduction leads to the following formula for the 
total number of units in a triangular number: 
 

𝐹𝐹3
2(𝑛𝑛) = 𝐹𝐹3

2(𝑛𝑛 − 1) + 𝑛𝑛 
                                = 𝐹𝐹3

2(𝑛𝑛 − 2) + (𝑛𝑛 − 1) + 𝑛𝑛 
       ⋮ 

                                                      = 1 + 2 + 3+. . . +(𝑛𝑛 − 1) + 𝑛𝑛 = ∑
𝑛𝑛

𝑖𝑖=1
𝑖𝑖. 

 
Although it lacks the rigorous standards of modern proofs, the famous derivation of 
the triangular formula by the child Friedrich Gauss, later a noted mathematician, 
earns homage here:  
 

    𝐹𝐹3
2(𝑛𝑛) = 1 +           2 +            3 + . . . +(𝑛𝑛 − 1) + 𝑛𝑛  

+𝐹𝐹3
2(𝑛𝑛) = 𝑛𝑛 + (𝑛𝑛 − 1) + (𝑛𝑛 − 2)+ . . . +          2  + 1  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 

2𝐹𝐹3
2(𝑛𝑛) = (𝑛𝑛 + 1) + (𝑛𝑛 + 1) + (𝑛𝑛 + 1)+ . . . +(𝑛𝑛 + 1) + (𝑛𝑛 + 1) = 𝑛𝑛(𝑛𝑛 + 1)  

∴ 𝐹𝐹3
2(𝑛𝑛) = 𝑛𝑛(𝑛𝑛+1)

2 .  
 
 An absence of evidence suggests the Pythagoreans did not develop a concept of 
zero; hence, the smallest possible value for each arithmetic series is the number one. 
This idea—that one is the smallest possible value—is a central component of 
Pythagorean philosophy, which interestingly establishes a formulation for 
monotheism: every arithmetic progression of figurate numbers includes the monad, 
and the monad is the only number that appears in every geometric arrangement. 
Thus, to the Pythagoreans, the monad is a perfect, self-replicating unit that births 
every possible geometric shape: each figurate number is comprised of just the monad 
and self-replicated copies, which form the various sizes and arrangments. Perhaps 

this line of reasoning also explains why the Pythagoreans adopted the  𝐹𝐹3
2(4)  

triangle as their sacred object (triangular numbers serve as a basis for all other 
figurate arrangments) and also why they were devastated after the discovery of an 
incommensurate number: the foundation for their entire philosophy was disproven. 
 
Theorem 1: Every integer greater than one can be expressed as the difference 
of two consecutive triangular numbers. 
 
Proof: Since every triangular number can be expressed in the algebraic form  𝑛𝑛(𝑛𝑛+1)

2 , the preceding 

triangular number may be expressed as  (𝑛𝑛−1)(𝑛𝑛)
2   by replacing  𝑛𝑛  with  𝑛𝑛 − 1,  where  𝑛𝑛 ∈ ℕ.  

Then, the application of algebraic laws provides the proof:  
 

𝑛𝑛(𝑛𝑛 + 1)
2 − (𝑛𝑛 − 1)(𝑛𝑛)

2 = 1
2 [𝑛𝑛(𝑛𝑛 + 1) − (𝑛𝑛 − 1)(𝑛𝑛)] 

 
 
     =   1

2 [(𝑛𝑛2 + 𝑛𝑛) − (𝑛𝑛2 − 𝑛𝑛)] 
 
    =  1

2 (𝑛𝑛2 + 𝑛𝑛 − 𝑛𝑛2 + 𝑛𝑛) 
 
    =  1

2 (2𝑛𝑛) 
 
     = 𝑛𝑛. 

∎ 
 The second arithmetic progression aligns itself to the geometric shape with four 
equilateral sides and congruent angles (see Figure 3), hence the name square 
numbers. While figurate numbers have been all but forgotten in the realm of 
mathematics, the naming convention and usage of square numbers are perhaps the 
only remnant still in use. In large part, mathematicians promoted square numbers 
over the others due to their ease of use and significance in quadratic equations.  
 

          • • • • 
      • • •  • • • • 
   • •  • • •  • • • • 
 •  • •  • • •  • • • • 
𝐹𝐹4

2(1)
= 1 

 𝐹𝐹4
2(2)

= 4 
 𝐹𝐹4

2(3) = 9  𝐹𝐹4
2(4) = 16 

 
Figure 3: The four smallest square numbers 
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Using the same argument for the construction of triangular numbers, each square 
number is generated by adding a corner section along the top and right of the 
previous shape. This new strip that is repeatedly added to the previous figure is called 
a gnomon, and it is unique for each figurate number type. For square numbers, the 
gnomon takes on an “L” shape and matches the Greek word 𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸𝜸 (gnōmōn), 
the name for the L-shaped carpenter’s square. The formulation of the arithmetic 
series of square numbers is  𝐹𝐹4

2(𝑛𝑛) = {1, 4, 9, 16, . . . , 𝑛𝑛2: 𝑛𝑛 ∈ ℕ}  and the difference 
between each number is simply each odd integer of corresponding size. Thus, one 
can deduce that the series for square numbers is  
 
 𝐹𝐹4

2(𝑛𝑛) = 𝐹𝐹4
2(𝑛𝑛 − 1) + (2𝑛𝑛 − 1) 

             = 𝐹𝐹4
2(𝑛𝑛 − 2) + (2𝑛𝑛 − 1) + (2𝑛𝑛 − 3) 

             ⋮ 
 
                                = 1 + 3 + 5+. . . +(2𝑛𝑛 − 3) + (2𝑛𝑛 − 1) = ∑𝑛𝑛

𝑖𝑖=1 2𝑖𝑖 − 1 
 
and can determine the formula for square numbers by applying the aforementioned 
Gaussian method: 
 

          𝐹𝐹 4
2(𝑛𝑛) =             1  +             3  +             5  + . . . +(2𝑛𝑛 − 3) + (2𝑛𝑛 − 1) 

      +𝐹𝐹 4
2(𝑛𝑛) = (2𝑛𝑛 − 1) + (2𝑛𝑛 − 3) + (2𝑛𝑛 − 5)+ . . . +            3  +              1 

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 
2𝐹𝐹 4

2(𝑛𝑛)  = (2𝑛𝑛) + (2𝑛𝑛) + (2𝑛𝑛)+ . . . +(2𝑛𝑛) + (2n) = 𝑛𝑛(2n) 

             ∴ 𝐹𝐹 4
2(𝑛𝑛) = 2𝑛𝑛2

2 = 𝑛𝑛2. 
 
An interesting aspect of square numbers is that one can decompose a square number 
into the sum of two consecutive triangular numbers. This fact can be demonstrated 
by simply drawing lines to connect the units of a square figurate into two right 
triangles, or, alternatively, it may be proven using algebra, as follows:  
 
Theorem 2: Square numbers decompose into two consecutive triangular 
numbers. 
 
Proof: Let 𝐹𝐹3

2(𝑛𝑛) denote an arbitrary triangular number with the previous triangular number being 
𝐹𝐹3

2(𝑛𝑛 − 1). Straight-forward computation yields the following: 
  

𝐹𝐹4
2(𝑛𝑛) = 𝑛𝑛2 = 2𝑛𝑛2

2   
 

= 𝑛𝑛2 + 𝑛𝑛
2 + 𝑛𝑛2 − 𝑛𝑛

2  

                                                  = 𝑛𝑛(𝑛𝑛+1)
2 + (𝑛𝑛)(𝑛𝑛−1)

2  
 

     = 𝐹𝐹3
2(𝑛𝑛) + 𝐹𝐹3

2(𝑛𝑛 − 1). 
                              

Hence, every square number can be expressed as the sum of two consecutive triangular numbers. 
 ∎  
In general, one may continue to perform this line of inquiry in order to establish the 
arithmetic progressions of the infinitely many figurate numbers for side count  𝑛𝑛 >
4 ; however, the author now moves to establish a general formula that generates all 
two-dimensional figurate number formulas. First, consider the following table of 
figurate numbers, Table 1: 
 

      Table 1. Table of figurate numbers 
 

Figure Formula Difference 

Triangle 
𝐹𝐹3

2(𝑛𝑛) = 1𝑛𝑛2 − (−1)𝑛𝑛
2  𝐹𝐹4

2(𝑛𝑛) − 𝐹𝐹3
2(𝑛𝑛) = 𝑛𝑛2 − 𝑛𝑛

2  

Square 
𝐹𝐹4

2(𝑛𝑛) = 2𝑛𝑛2 − (0)𝑛𝑛
2  𝐹𝐹5

2(𝑛𝑛) − 𝐹𝐹4
2(𝑛𝑛) = 𝑛𝑛2 − 𝑛𝑛

2  

Pentagon 
𝐹𝐹5

2(𝑛𝑛) = 3𝑛𝑛2 − (1)𝑛𝑛
2  𝐹𝐹6

2(𝑛𝑛) − 𝐹𝐹5
2(𝑛𝑛) = 𝑛𝑛2 − 𝑛𝑛

2  

Hexagon 
𝐹𝐹6

2(𝑛𝑛) = 4𝑛𝑛2 − (2)𝑛𝑛
2  𝐹𝐹7

2(𝑛𝑛) − 𝐹𝐹6
2(𝑛𝑛) = 𝑛𝑛2 − 𝑛𝑛

2  

⋮ ⋮ ⋮ 

 
Notice that the difference between every two consecutive formulas is the same value 
(constant). This information is valuable in that it can be used to construct a proof 
using the principle of mathematical induction. 
 
Theorem 3, the base formula for two-dimensional figurate number series 
 
Proof: Proceeding via the principle of mathematical induction, let  P(m)  denote the statement that 

“every arithmetic series for figurate numbers may be generated by the formula  (𝑚𝑚−2)𝑛𝑛2−(𝑚𝑚−4)𝑛𝑛
2 , 

where 𝑚𝑚, 𝑛𝑛 ∈ ℕ and 𝑚𝑚 ≥ 3.” The basis step  𝑚𝑚 = 3  produces  𝑃𝑃(3) = 𝑛𝑛2+𝑛𝑛
2  , which is the 

formula for triangular numbers and thus a true statement. Proceeding now to the inductive 
hypothesis, let  𝑃𝑃(𝑘𝑘)  denote the statement that every arithmetic series for figurate numbers can be 
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16

generated by the formula  (𝑘𝑘−2)𝑛𝑛2−(𝑘𝑘−4)𝑛𝑛
2 , where  𝑘𝑘, 𝑛𝑛 ∈ ℕ.  The ensuing steps demonstrate that  

𝑃𝑃(𝑘𝑘 + 1)  necessarily follows: 

   𝑃𝑃(𝑘𝑘 + 1)  =
[(𝑘𝑘 + 1) − 2]𝑛𝑛2 − [(𝑘𝑘 + 1) − 4]𝑛𝑛

2  
 

=
(𝑘𝑘 − 1)𝑛𝑛2 − (𝑘𝑘 − 3)𝑛𝑛

2  
 

                  =
(𝑘𝑘 − 2)𝑛𝑛2 − (𝑘𝑘 − 4)𝑛𝑛

2 + 𝑛𝑛2 − 𝑛𝑛
2  

 

                          = 𝑃𝑃(𝑘𝑘) + 𝑛𝑛2−𝑛𝑛
2 . 

 

Given that  𝑛𝑛
2−𝑛𝑛
2   is the constant value between figurate number formulas, this proof has 

demonstrated that  P(k+1)  is true. Therefore, by the principle of mathematical induction, every 
arithmetic series for two-dimensional figurate numbers can be generated by the formula  
(𝑚𝑚−2)𝑛𝑛2−(𝑚𝑚−4)𝑛𝑛

2  , where  𝑚𝑚, 𝑛𝑛 ∈ ℕ and 𝑚𝑚 ≥ 3. ∎ 
 
         The Pythagoreans produced a lasting impact on mathematics that was spawned 
by their philosophy, which had the worship of numbers as its central tenet. The 
Pythagoreans’ ideas influenced the works of Plato, Aristotle, and most notably 
Euclid, although the geometric representation had been drastically reduced from n-
gonal numbers to only square and oblong (rectangular) numbers. Evidence of this 
may be found in Euclid’s The Elements, where definitions 15-19 in Book VII discuss 
integers in relation to geometric orientation.4 However, Euclid had trouble absorbing 
the arithmetic series of figurate numbers,4 as noted by Heath in his translation and 
commentary: 
 

The words plane and solid applied to numbers are of course 
adapted from their use with reference to geometrical 
figures...Iamblicus tells us that in the old days they represented 
the quantuplicities of number in a more natural way by splitting 
them up into units, and not, as in our day, by symbols. Aristotle 
too mentions one Eurytus as having settled what number 
belonged to what, such a number to a man, such a number to a 
horse, and so on, “copying their shape with pebbles, just as 
those do who arrange numbers in the forms of triangles or 
squares.”5 

 

 

However, mathematicians who appear immediately after Euclid, such as 
Nichomachus, Theon of Smyrna, and Diophantus, called into question Euclid’s 
notion of representing numbers as lines, areas, and volumes, specifically when it 
came to the representation of the operation “a number multiplied by one.”5 Here, 
Euclid’s definitions encounter problems as some operations call for a construction in 
𝑥𝑥 dimensions yet the result appears to be in 𝑦𝑦 dimensions. For example, consider the 
statement "three multiplied by one equals three." Because the operation is 
multiplication, Euclid’s definitions characterize the result as a two-dimensional 
object, line multiplied by line, producing an area. However, the number three prior to 
the operation was already a one-dimensional representation (a line). Here, a line 
multiplied by a line did not produce an area but another line, which is paradoxical 
according to the working definitions. This was just one of several areas that was 
revised by the Neo-Pythagoreans, who kept the mathematics developed by the 
original Pythagorean school but chose to rework the taxonomy and philosophical 
components. 

 
The Neo-Pythagoreans 

 
     One of the earliest figures in Neo-Pythagoreanism was Nicomachus, about 

whom little is known. Nichomachus, pictured in Figure 4, was heavily influenced by 
Plato and the original Pythagoreans, whose traditions were still extant in 
Nichomachus’s day. Although Nichomachus subscribed to the many established 
doctrines of the Pythagoreans, he differed 
with their traditional views on education. 
Nichomachus maintained that, of the four 
subjects stressed by Plato’s academy, 
arithmetics was superior.3 The emphasis 
placed on arithmetics by Nicomachus was a 
bold assertion since the traditional model 
called for an equal balance of study among 
the various subjects. Subsequently, 
Nichomachus made many contributions in 
arithmetic and figurate numbers, where he 
expanded on the original ideas and invented 
several more. 

     One of Nichomachus’s assertions for 
figurate numbers was that the “(n-1)st 
triangular number added to the nth k-gonal 
number gives the nth (k+1)-gonal number.”3 
Here is a proof of Nichomachus’s assertion: 
 

Figure 4: A depiction of 
Nicomachus6 
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Theorem 4, Nicomachus's first figurate theorem: The nth (k+1)-gonal 
number may be written as the sum of the (n-1)th triangular number plus the 
nth k-gonal number. 
 
Proof: Let  𝐹𝐹𝑘𝑘+1

2 (𝑛𝑛)  represent the nth (k+1)-gonal number and  𝐹𝐹𝑘𝑘
2(𝑛𝑛)  represent the nth k-

gonal number. Applying Theorem 3 yields the following:  
 
              𝐹𝐹𝑘𝑘+1

2 (𝑛𝑛) = 𝐹𝐹3
2(𝑛𝑛 − 1) + 𝐹𝐹𝑘𝑘

2(𝑛𝑛) 

 
(𝑘𝑘 − 1)𝑛𝑛2 − (𝑘𝑘 − 3)𝑛𝑛

2
= (3 − 2)(𝑛𝑛 − 1)2 − (3 − 4)(𝑛𝑛 − 1)

2 + (𝑘𝑘 − 2)𝑛𝑛2 − (𝑘𝑘 − 4)𝑛𝑛
2  

 
 = (𝑛𝑛 − 1)2 + (𝑛𝑛 − 1)

2 + (𝑘𝑘 − 2)𝑛𝑛2 − (𝑘𝑘 − 4)𝑛𝑛
2  

 

                               = 𝑛𝑛2 − 𝑛𝑛
2 + (𝑘𝑘 − 2)𝑛𝑛2 − (𝑘𝑘 − 4)𝑛𝑛

2  

 

                                = (𝑘𝑘 − 1)𝑛𝑛2 − (𝑘𝑘 − 3)𝑛𝑛
2 . 

  ∎  
 
In addition to discovering a connection among all the figurate numbers, 
Nichomachus made the curious discovery that the sum of the first  n  number of odd 
integers is equal to  n squared (see Table 2): 

 
            Table 2. Sum of first n number of odd integers equals n squared. 
 

 
The First n Odd Integers 

 
Summation 

    1 12 

    1+3 22 

    1+3+5 32 

    1+3+5+7 42 

           1+3+5+7+9 52 

⋮ ⋮ 

 

He also asserted that a number cubed is equal to the summation of odd integers that 
start at  𝐹𝐹3

2(𝑛𝑛 − 1)  and run to  𝐹𝐹3
2(𝑛𝑛 − 1) + 𝑛𝑛  (see Table 3):. 

 

Table 3. Summation of sequential odd integers equals n cubed. 
 

 
Run of n Odd Integers 

 
Summation 

 1 13 

 3+5 23 

 7+9+11 33 

        13+15+17+19 43 

 21+23+25+27+29 53 

⋮ ⋮ 
 
 
In honor of Nichomachus, the author offers the following proof, linking triangular 
numbers and square numbers (two-dimensional figurate) to cubed numbers (three-
dimensional figurate). 
 
Theorem 5, triangular numbers to cubed numbers: Every cubed integer 
greater than one is the difference of two square numbers whose indices are 
consecutive triangluar numbers. 

 
Proof:  

𝐹𝐹4
2[𝐹𝐹3

2(𝑛𝑛)] − 𝐹𝐹4
2[𝐹𝐹3

2(𝑛𝑛 − 1)] = [𝑛𝑛(𝑛𝑛 + 1)
2 ]

2
− [𝑛𝑛(𝑛𝑛 − 1)

2 ]
2
 

 

                                                  = 𝑛𝑛2(𝑛𝑛 + 1)2

4 − 𝑛𝑛2(𝑛𝑛 − 1)2

4  

 

                                                                = 𝑛𝑛4 + 2𝑛𝑛3 + 𝑛𝑛2

4 − 𝑛𝑛4 − 2𝑛𝑛3 + 𝑛𝑛2

4  

 

                                                               = 𝑛𝑛4 + 2𝑛𝑛3 + 𝑛𝑛2 − 𝑛𝑛4 + 2𝑛𝑛3 − 𝑛𝑛2

4  

 

           = 4𝑛𝑛3

4  

 
         = 𝑛𝑛3 

∎   
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The following Table 4 illustrates the results of Theorem 5: 
 
                       Table 4. Triangular numbers to cubed numbers 
 

Run of n 
Odd Integers 

 
Summation 

32-12 23 

62-32 33 

102-62 43 

152-102 53 

212-152 63 

… … 
 
 

     Besides Nichomachus, the other leading Neo-Pythagorean who contributed 
to the advancement of figurate numbers was Diophantus of Alexandria, portrayed in 
Figure 5. Diophantus wrote several books on mathematics and took the first steps 
toward the development of a completely abstract system, which later blossomed into 
algebra. In his work, Diophantus focused on deducing the arithmetic properties of 
figurate numbers, such as deducing the number of sides, the different ways a number 

can be expressed as a figurate 
number, and the formulation of the 
arithmetic progressions.7 

      It appears that Diophantus was 
influenced by Euclid’s work but 
strove to re-establish Euclid’s views 
on numbers through the syncretism 
of ancient Pythagorean 
representation. By utilizing discrete 
values in the form of pebbles rather 
than lines, Diophantus assisted in the 
taxonomy of numbers at the expense 
of neglecting the development of 
incommensurate numbers. Regardless 
of his motivation, Diophantus not 
only revived but also furthered the 
theory of figurate numbers, with one 
specific addition being the following 
algorithm, which tests whether an 
integer is of a certain m-gonality.9: 

 
 

Figure 5: A depiction of 
Diophantus of Alexandria8 

Definition: The Diophantus Algorithm 
 
Step 1. Test an arbitrary integer  𝑛𝑛  to determine if it is a perfect square:  

8(𝑚𝑚 − 2)𝐹𝐹𝑚𝑚
2(𝑛𝑛) + (𝑚𝑚 − 4)2 = 𝑥𝑥,       𝑥𝑥 ∈ ℕ 

 
Step 2. If  𝑥𝑥  is a perfect square, then  n  is obtained for the m-gonal number through  

2𝑛𝑛(𝑚𝑚 − 2) − (𝑚𝑚 − 4). 
 
The Diophantus Algorithm requires two computational steps, which is justified given 
the complete lack of algebra during the 2nd century CE. An alternative method to 
test m-gonality uses the established facts that every number can be expressed as the 
difference of two triangular numbers (Theorem 1) and every square number is the 
difference of two consecutive triangular numbers (Theorem 2). 
 
Theorem 6, M-gonal test via the linear combination of consecutive triangular 
numbers: Every integer can be tested for m-gonality by the formula  𝐱𝐱 =
𝐅𝐅𝟑𝟑

𝟐𝟐(𝐧𝐧) + (𝐦𝐦 − 𝟑𝟑)𝐅𝐅𝟑𝟑
𝟐𝟐(𝐧𝐧 − 𝟏𝟏), 𝐱𝐱 ∈ ℕ . 

 
Proof: From Theorem 3, every two-dimensional figurate number can be expressed in terms of the 

formula  𝐹𝐹𝑚𝑚
2(𝑛𝑛) = (𝑚𝑚−2)𝑛𝑛2−(𝑚𝑚−4)𝑛𝑛

2  . Thus,  
 

(𝑚𝑚 − 2)𝑛𝑛2 − (𝑚𝑚 − 4)𝑛𝑛
2 = (𝑚𝑚 − 2)𝑛𝑛2 − (𝑚𝑚 − 4)𝑛𝑛

2 + 𝑛𝑛(𝑛𝑛 + 1)
2 − 𝑛𝑛(𝑛𝑛 + 1)

2  

 

           = 𝑛𝑛(𝑛𝑛 + 1)
2 + (𝑚𝑚 − 3)(𝑛𝑛2 − 𝑛𝑛)

2  

 

             = 𝑛𝑛(𝑛𝑛 + 1)
2 + (𝑚𝑚 − 3) 𝑛𝑛(𝑛𝑛 − 1)

2  

 
          = 𝐹𝐹3

2(𝑛𝑛) + (𝑚𝑚 − 3)𝐹𝐹3
2(𝑛𝑛 − 1). 

 
Therefore, every integer can be tested for m-gonality via the formula  𝑥𝑥 = 𝐹𝐹3

2(𝑛𝑛) +
(𝑚𝑚 − 3)𝐹𝐹3

2(𝑛𝑛 − 1). ∎  
 
Theorem 6 allows the mathmatician to input an unknown value  𝑥𝑥  and test arbitrary 
values for  𝑚𝑚  where solutions have integer values for  𝑛𝑛. However, the true power 
of this theorem lies in the following corollary, which states that 𝑚𝑚-gonality can be 
checked through the well-known quadratic formula:  
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Corollary 1: M-gonal test via the quadratic formula 
  

𝑥𝑥 = 𝑛𝑛2 + 𝑛𝑛
2 + (𝑚𝑚 − 3)(𝑛𝑛2 − 𝑛𝑛)

2 ⟹ 

 
(𝑚𝑚 − 2)𝑛𝑛2 + (4 − 𝑚𝑚)𝑛𝑛 − 2𝑥𝑥 = 0, 𝐴𝐴 = (𝑚𝑚 − 2), 𝐵𝐵 = (4 − 𝑚𝑚), 𝐶𝐶 = −2𝑥𝑥. 

 
 
For example, one can test an arbitrary integer, say 215, to see if it is a hexagonal 
number  (𝑚𝑚 = 6): 
 

(6 − 2)𝑛𝑛2 + (4 − 6)𝑛𝑛 − 2(215) = 0 
 

                                    4𝑛𝑛2 − 2𝑛𝑛 − 430 = 0 
 

                                                                                    𝑛𝑛 = 1 ± √1721
4 . 

 
Since the desired solutions for  𝑛𝑛  are positive integers, one can conclude that 215 is 
not a hexagonal number because these two solutions are both irrational. 
Alternatively, consider the number 1551 to see if it is a triagontagonal number (a 30-
sided figure): 

 
                                    (30 − 2)𝑛𝑛2 + (4 − 30)𝑛𝑛 − 2(1551) = 0 

 
                      28𝑛𝑛2 − 26𝑛𝑛 − 3102 = 0 

 

                                  𝑛𝑛 = −141
14  𝑜𝑜𝑜𝑜 𝑛𝑛 = 11. 

 
Thus, 1551 is the 11th triagontagonal number because this equation results in an 
integer solution.  

     Diophantus was one of the first mathematicians to systematically seek 
solutions for equations of specific forms, especially those that have multiple 
unknowns. For example, Diophantus commonly examined problems of the form  
𝑥𝑥2 + 𝑦𝑦2 = 𝑧𝑧2 , which generates Pythagorean triplets when 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ∈ ℤ . Due to the 
nature of mathematics during his day, Diophantus often sought only integer 
solutions to these types of problems and was often satisfied upon finding a single 
solution. However, solving equations of this type often leads to parametric solutions 
where infinitely many solutions satisify the equation. In honor of Diophantus, 
equations of the form  𝐴𝐴𝑥𝑥𝑛𝑛 + 𝐵𝐵𝑦𝑦𝑛𝑛 = 𝐶𝐶𝑧𝑧𝑛𝑛  are now known as Diophantine 
equations. Continuing with the example of the second-degree Diophantine equation, 

𝑥𝑥2 + 𝑦𝑦2 = 𝑧𝑧2 , one sees that both (3,4,5) and (5,12,13) are two of the infinitely 

many solutions given by the parametric solutions  𝑥𝑥 = 𝑠𝑠𝑠𝑠, 𝑦𝑦 = 𝑠𝑠2−𝑡𝑡2

2 , 𝑧𝑧 = 𝑠𝑠2+𝑡𝑡2

2  .  
       The ability to solve these types of equations allows the mathemetician to answer 
more advanced questions on figurate numbers, such as “which triangular numbers 
are also square numbers?” One obvious approach would be to set up an equation in 
which the triangular number formula is equal to the square number formula, 
resulting in the Diophantine equation (alternatively called a Pell equation since there 
is only one coefficient), 

𝑠𝑠2+𝑠𝑠
2 = 𝑠𝑠2𝑛𝑛2 + 𝑛𝑛 = 2𝑚𝑚2 . 

 
As mentioned earlier with parametric solutions, mathematicians of Diophantus’s 
time were satisfied with a single, non-trivial solution like (8,6): (8)2 + (8) =
2(6)2 = 72 . These solutions were often obtained through trial and error, and it was 
not until 1778 that the great Leonhard Euler showed that a parametric solution 
existed for which triangular numbers are also square numbers:   
 

    𝑁𝑁𝑘𝑘 = [(3+2√2)𝑘𝑘−(3−2√2)𝑘𝑘

4√2 ]
2
.10   

 
After Diophantus, a large shift occurred in the realm of mathematics, and 
development was neglected for several centuries until Fibonnaci reintroduced the 
western world to mathematics in the 12th century CE. Building on Fibonacci and 
Diophantus, the next major steps were taken by the pioneering fathers of modern 
number theory, Blaise Pascal and Pierre de Fermat. 
 

Birth of Modern Number Theory 
 
          During the 17th century, mathematics underwent sweeping reforms in the 
western world. A large majority of these revolutionary skirmishes took place in 
response to the mathematicians Descartes, Pascal, and Fermat, whose work in 
arithmetic and algebraic methods challenged the prevailing models during their 
time.11,12 Several of these newer developments resulted in famous mathematical 
feuds, as the new creative methods were demonstrating the same explanatory power 
as geometry without the need for geometric principles.  
          Blaise Pascal (see Figure 6) excelled at mathematics and science even as a 
child. In his early adulthood, he created a precursor to the calculator known as 
Pascal’s calculator, or a Pascaline. Pascal’s work in mathematics spanned several 
different areas, with his most recognized contribution being his work in probability 
theory. In 1653, Pascal wrote his Treatise on the Arithmetic Triangle, which discusses the 
triangular array known as Pascal’s triangle. This triangle—rife with numerical 
patterns and mathematical connections—is primarily used for the identification of 
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are also square numbers?” One obvious approach would be to set up an equation in 
which the triangular number formula is equal to the square number formula, 
resulting in the Diophantine equation (alternatively called a Pell equation since there 
is only one coefficient), 

𝑠𝑠2+𝑠𝑠
2 = 𝑠𝑠2𝑛𝑛2 + 𝑛𝑛 = 2𝑚𝑚2 . 

 
As mentioned earlier with parametric solutions, mathematicians of Diophantus’s 
time were satisfied with a single, non-trivial solution like (8,6): (8)2 + (8) =
2(6)2 = 72 . These solutions were often obtained through trial and error, and it was 
not until 1778 that the great Leonhard Euler showed that a parametric solution 
existed for which triangular numbers are also square numbers:   
 

    𝑁𝑁𝑘𝑘 = [(3+2√2)𝑘𝑘−(3−2√2)𝑘𝑘

4√2 ]
2
.10   

 
After Diophantus, a large shift occurred in the realm of mathematics, and 
development was neglected for several centuries until Fibonnaci reintroduced the 
western world to mathematics in the 12th century CE. Building on Fibonacci and 
Diophantus, the next major steps were taken by the pioneering fathers of modern 
number theory, Blaise Pascal and Pierre de Fermat. 
 

Birth of Modern Number Theory 
 
          During the 17th century, mathematics underwent sweeping reforms in the 
western world. A large majority of these revolutionary skirmishes took place in 
response to the mathematicians Descartes, Pascal, and Fermat, whose work in 
arithmetic and algebraic methods challenged the prevailing models during their 
time.11,12 Several of these newer developments resulted in famous mathematical 
feuds, as the new creative methods were demonstrating the same explanatory power 
as geometry without the need for geometric principles.  
          Blaise Pascal (see Figure 6) excelled at mathematics and science even as a 
child. In his early adulthood, he created a precursor to the calculator known as 
Pascal’s calculator, or a Pascaline. Pascal’s work in mathematics spanned several 
different areas, with his most recognized contribution being his work in probability 
theory. In 1653, Pascal wrote his Treatise on the Arithmetic Triangle, which discusses the 
triangular array known as Pascal’s triangle. This triangle—rife with numerical 
patterns and mathematical connections—is primarily used for the identification of 
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binomial coefficients. As shown in 
Figure 7, one of the more interesting  
patterns that occurs in Pascal’s triangle 
is along the third diagonal in both 
directions: the reader’s old friends, the 
triangular numbers. In fact, all of the 
rows for Pascal’s triangle correspond 
to figurate numbers, known as the 
figurate numbers of simplices. In 
geometry, a simplex is the 
consideration of a triangle in arbitrary 
dimensions, and, in the notation used 
here, the simplex is every arithmetic 
series of the form  𝐹𝐹3

𝑥𝑥(𝑛𝑛)  where  𝑥𝑥 ∈
ℕ . Pascal was not the first person to 
establish this triangular array, as much 
work on the figurate numbers of 
simplices had already been carried out 
by Chinese and Neo-Pythagorean 

mathematicians in previous centuries. However, Pascal was instrumental in making 
the previously unidentified connections between binomial coefficients and 
combinatorics.11 
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Figure 7: Pascal’s Triangle (triangular numbers are shaded) 
 
          Offered in the spirit of Pascal, the following proof demonstrates that every 
positive consecutive integer product is divisible by the summation of integers less 𝑛𝑛. 
 
Theorem 7: The positive consecutive summation of n-1 terms divides a 
positive consecutive product of n terms. The product of positive consecutive 
integers  𝐧𝐧!  is divisible by the summation less  n: 𝐅𝐅𝟑𝟑

𝟐𝟐(𝐧𝐧 − 𝟏𝟏)|  𝐧𝐧! . 
 

         Figure 6: Blaise Pascal13 

Proof:  
𝑛𝑛!

𝐹𝐹3
2(𝑛𝑛 − 1) = 1 ∗ 2 ∗ 3 ∗ … ∗ (𝑛𝑛 − 1) ∗ 𝑛𝑛

1 + 2 + 3 + ⋯ (𝑛𝑛 − 2) + (𝑛𝑛 − 1) 

 

= 1 ∗ 2 ∗ 3 ∗ … ∗ (𝑛𝑛 − 1) ∗ 𝑛𝑛
(𝑛𝑛 − 1) ∗ (𝑛𝑛 − 2)

2
 

 

= 2 ∗ 2 ∗ 3 ∗. . .∗ (𝑛𝑛 − 1) ∗ 𝑛𝑛
(𝑛𝑛 − 2) ∗ (𝑛𝑛 − 1)  

 
                                                 = 2 ∗ 2 ∗ 3 ∗. . .∗ (𝑛𝑛 − 4) ∗ (𝑛𝑛 − 3) ∗ 𝑛𝑛. ∎ 
 
Corollary 2: Every triangular number greater than three is composite.  
 
          In Pierre de Fermat’s time, algebra had matured to the point that it was 
powerful enough to challenge the notion that geometry was the bedrock of 
mathematics, and it was these advancements that enabled Fermat to develop 
significant components of the theoretical nature of numbers. It must be understood 
that during the Age of Reason, the profession of mathematician was non-existent; 
hence, for Pascal, Fermat, Descartes and company, mathematics was seen more as a 
leisure activity than an academic pursuit: most of the mathematical advancements 
during this time were made via public intellectual contests and personal 
correspondence between academicians. Pierre de Fermat (see Figure 8) was no 
exception to this rule, and the bulk of his contributions are known through Fermat’s 
correspondence with friends and colleagues.14 

          Besides the tomes of personal 
correspondence left by Fermat, some of his 
work comes from notes scribbled in his 
personal books. Fermat penned one of his 
most legendary passages in the margin of 
his copy of Diophantus’s Arithmeticae: “I 
have discovered a truly remarkable proof of 
this theorem which this margin is too small 
too contain.”14 In similar vein, many of 
Fermat’s contributions to mathematics 
appear as motivational challenges to the 
math community at large. In regard to his 
work on figurate numbers, Fermat pushed 
Diophantus’s work further by creating 
even more connections. One of the most 
famous of these was Fermat’s figurate 

  Figure 8. Pierre de Fermat15 

 



25
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powerful enough to challenge the notion that geometry was the bedrock of 
mathematics, and it was these advancements that enabled Fermat to develop 
significant components of the theoretical nature of numbers. It must be understood 
that during the Age of Reason, the profession of mathematician was non-existent; 
hence, for Pascal, Fermat, Descartes and company, mathematics was seen more as a 
leisure activity than an academic pursuit: most of the mathematical advancements 
during this time were made via public intellectual contests and personal 
correspondence between academicians. Pierre de Fermat (see Figure 8) was no 
exception to this rule, and the bulk of his contributions are known through Fermat’s 
correspondence with friends and colleagues.14 

          Besides the tomes of personal 
correspondence left by Fermat, some of his 
work comes from notes scribbled in his 
personal books. Fermat penned one of his 
most legendary passages in the margin of 
his copy of Diophantus’s Arithmeticae: “I 
have discovered a truly remarkable proof of 
this theorem which this margin is too small 
too contain.”14 In similar vein, many of 
Fermat’s contributions to mathematics 
appear as motivational challenges to the 
math community at large. In regard to his 
work on figurate numbers, Fermat pushed 
Diophantus’s work further by creating 
even more connections. One of the most 
famous of these was Fermat’s figurate 
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number theorem, which states that every number 𝑛𝑛 can be written as the sum of at 
most 𝑛𝑛 figurate numbers of 𝑛𝑛-gonal sides. While it seems unlikely that Fermat ever 
solved this conjecture due to the lack of required mathematical theory in his time, 
several advances were made over the next century and the eventual proof was 
derived in 1813 by Cauchy.  
          After Fermat, number theory and figurate numbers were never the same: new 
ideas were formulated and several gaps were bridged. For instance, mathematicians 
began noticing connections such as the relationship of triangular numbers to Pell-
Lucas numbers (fractions whose values increasingly approximate 1 + √2, the silver 
ratio). 
  
Theorem 8, deriving non-trivial factors of triangular numbers from Pell-Lucas 
numbers 
 
Proof: It is well-known that  (𝑃𝑃𝑛𝑛 + 𝑃𝑃𝑛𝑛−1)2(𝑃𝑃𝑛𝑛)2 = 𝐹𝐹3

2(𝑛𝑛) , where  𝑃𝑃𝑛𝑛, 𝑃𝑃𝑛𝑛−1  denote Pell-
Lucas numbers. Since every triangular number greater than three is composite (Corollary 2), one 
seeks to establish possible non-trivial factor pairs: 
 

𝑛𝑛(𝑛𝑛 + 1)
2 = 4

4 [𝑛𝑛(𝑛𝑛 + 1)
2 ] 

 

          = 4𝑛𝑛2 + 4𝑛𝑛
8  

 

                              = (2𝑛𝑛 + 1)2 − (−1)2𝑛𝑛

8  

 

                                                          = (2𝑛𝑛 + 1) + (−1)𝑛𝑛

2 ∗ (2𝑛𝑛 + 1) − (−1)𝑛𝑛

4 . 
 
From the Pell identity it is known tha t  (𝑃𝑃𝑛𝑛 + 𝑃𝑃𝑛𝑛−1)2 = 2𝑛𝑛+1+(−1)𝑛𝑛

2   and  𝑃𝑃𝑛𝑛
2 =

2𝑛𝑛+1−(−1)𝑛𝑛

4   because  𝑃𝑃𝑛𝑛 ≤ 𝑃𝑃𝑛𝑛 + 𝑃𝑃𝑛𝑛−1 . Now, since the term  (−1)𝑛𝑛  alternates signs as n 
alternates, there are two cases for each equation, making a total of four required solutions. 
Arbitrarily choosing to solve  (𝑃𝑃𝑛𝑛 + 𝑃𝑃𝑛𝑛−1)2  first, the mathematician finds the following: 
 
Case 1: n is even 

(𝑃𝑃𝑛𝑛 + 𝑃𝑃𝑛𝑛−1)2 = 2𝑛𝑛 + 2
2  

 
                        = 𝑛𝑛 + 1. 

  

Case 2: n is odd 

(𝑃𝑃𝑛𝑛 + 𝑃𝑃𝑛𝑛−1)2 = 2𝑛𝑛
2  

 

                        = 𝑛𝑛. 
 

And now the mathematician solves  𝑃𝑃𝑘𝑘
2  for solutions: 

 
Case 3: n is even 
 

         (𝑃𝑃𝑛𝑛)2 = 2𝑛𝑛
4  

 

           = 𝑛𝑛
2. 

Case 4: n is odd  

(𝑃𝑃𝑘𝑘)2 = 2𝑛𝑛 + 2
4  

 

  = 𝑛𝑛 + 1
2 . 

 
In conclusion, because one seeks factors of triangular numbers, it follows that when  𝑛𝑛  is even, case 
1 and case 3 are the factors. Similarly, when  𝑛𝑛  is odd, case 2 and case 4 are the factors.∎  

 
Figurate Numbers in Modern Times 

 
           In the present day, the rise of science has shifted the focus for mathematicians, 
and developments in figurate numbers have mostly stalled. Mathematics with 
immediate connections to physical applications, such as calculus and differential 
equations, have taken priority over the more philosophical theories, which have 
become novelties. For figurate numbers, the advancements have largely been 
grounded in geometric properties, such as mirroring the different polytopes and 
creating new arithmetic series corresponding to figures in higher dimensions. For 
example, the following Table 5 outlines the expansion of triangular numbers into the 
third and fourth dimensions: 
 
Table 5: Figurate numbers in higher dimensions 
 
     geometric 
       object 

 
dimension  

 
  n=1  

 
  n=2  

 
   n=3  

 
   n=4  

 
  n=5  

 
  ...  

      triangle      2     1     3       6     10    15   ... 
   tetrahedron      3     1     4     10     20    35   ... 
 hypertetrahedron      4     1     5     15     35    70   ... 
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Case 2: n is odd 

(𝑃𝑃𝑛𝑛 + 𝑃𝑃𝑛𝑛−1)2 = 2𝑛𝑛
2  

 

                        = 𝑛𝑛. 
 

And now the mathematician solves  𝑃𝑃𝑘𝑘
2  for solutions: 

 
Case 3: n is even 
 

         (𝑃𝑃𝑛𝑛)2 = 2𝑛𝑛
4  

 

           = 𝑛𝑛
2. 

Case 4: n is odd  

(𝑃𝑃𝑘𝑘)2 = 2𝑛𝑛 + 2
4  

 

  = 𝑛𝑛 + 1
2 . 

 
In conclusion, because one seeks factors of triangular numbers, it follows that when  𝑛𝑛  is even, case 
1 and case 3 are the factors. Similarly, when  𝑛𝑛  is odd, case 2 and case 4 are the factors.∎  

 
Figurate Numbers in Modern Times 

 
           In the present day, the rise of science has shifted the focus for mathematicians, 
and developments in figurate numbers have mostly stalled. Mathematics with 
immediate connections to physical applications, such as calculus and differential 
equations, have taken priority over the more philosophical theories, which have 
become novelties. For figurate numbers, the advancements have largely been 
grounded in geometric properties, such as mirroring the different polytopes and 
creating new arithmetic series corresponding to figures in higher dimensions. For 
example, the following Table 5 outlines the expansion of triangular numbers into the 
third and fourth dimensions: 
 
Table 5: Figurate numbers in higher dimensions 
 
     geometric 
       object 

 
dimension  

 
  n=1  

 
  n=2  

 
   n=3  

 
   n=4  

 
  n=5  

 
  ...  

      triangle      2     1     3       6     10    15   ... 
   tetrahedron      3     1     4     10     20    35   ... 
 hypertetrahedron      4     1     5     15     35    70   ... 
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Similar to the expansion in higher dimensions, figurate numbers continue to be 
developed in two dimensions under alternative discrete arrangements. For example, 
Table 6 compares hexagonal numbers, which form the traditional figurate number 
set, with their cousins, the centered hexagonal numbers: 
 
Table 6: An alternative figurate number arrangement 
 
    geometric  
      object 

  
formula 

 
 n=1 

 
   n=2 

 
   n=3 

 
   n=4 

 
   n=5 

 
… 

    hexagonal 2𝑛𝑛2 − 𝑛𝑛    1     6     15     28     45    ... 

     centered 
    hexagonal 

𝑛𝑛3 − (𝑛𝑛 − 1)3    1     7     19     37     61    ... 

 
          Unfortunately, the continuing advancements made in the field of figurate 
numbers have not been sufficient to garner the attention of serious mathematicians, 
who have largely shifted their focus to other theories that have immediate 
application. This emphasis has been brought about by the scientific revolution, 
which continues to guide the role and purpose of mathematics in contemporary 
societies. However, even though the theory of figurate numbers does not have any 
apparent modern use, history has shown that previously established mathematics 
sometimes have an unforseen purpose. 
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